Comparison between Cationic Polymer and Lipid in Plasmidic DNA Delivery to the Cell Nucleus

نویسندگان

  • Massimo Conese
  • Alessandra Biffi
  • Giorgia Dina
  • Nicola Marziliano
  • Antonello Villa
چکیده

We investigated the cell association and intracellular pathway to the nucleus of complexes formed between DNA and cationic lipid DOTAP (lipoplexes) or cationic polymer polyethylenimine (polyplexes). Flow cytometry and confocal microscope analysis showed that lipoplexes presented higher affinity for cell membrane than polyplexes. Electron microscopy demonstrated that both types of complexes followed an endocytic pathway and were metabolized but did not enter the nucleus. However, by in situ PCR and FISH it was possible to show that the plasmid localized to the nuclei, indicating that DNA must be dissociated from the vectors to be delivered to the nucleus. Our results identify a different behaviour in the interaction of polyplexes and lipoplexes with the cell, indicating that a combination of advantageous properties of the two kinds of cationic molecules could further ameliorate efficiency of nonviral gene

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating lipopolymers based on polyethylenimine and nanoliposome for gene delivery to prostate cancer (PC3) cell line

Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clini...

متن کامل

Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybr...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design

Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...

متن کامل

Surface- and hydrogel-mediated delivery of nucleic acid nanoparticles.

Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Althou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009